Redox control of GPx catalytic activity through mediating self-assembly of Fmoc-phenylalanine selenide into switchable supramolecular architectures.
نویسندگان
چکیده
Artificial enzymes capable of achieving tunable catalytic activity through stimuli control of enzymatic structure transition are of significance in biosensor and biomedicine research. Herein we report a novel smart glutathione peroxidise (GPx) mimic with modulatory catalytic activity based on redox-induced supramolecular self-assembly. First, an amphiphilic Fmoc-phenylalanine-based selenide was designed and synthesized, which can self-assemble into nanospheres (NSs) in aqueous solution. The NSs demonstrate extremely low GPx activity. Upon the oxidation of hydroperoxides (ROOH), the selenide can be quickly transformed into the selenoxide form. The change of the molecular structure induces complete morphology transition of the self-assemblies from NSs to nanotubes (NTs), resulting in great enhancement in the GPx catalytic activity. Under the reduction of GSH, the selenoxide can be further reversibly reduced back into the selenide; therefore the reversible switch between the NSs and NTs can be successfully accomplished. The relationship between the catalytic activity and enzymatic structure was also investigated. The dual response nature makes this mimic play roles of both a sensor and a GPx enzyme at the same time, which can auto-detect the signal of ROOH and then auto-change its activity to achieve quick or slow/no scavenging of ROOH. The dynamic balance of ROOH is vital in organisms, in which an appropriate amount of ROOH does benefit to the metabolism, whereas surplus ROOH can cause oxidative damage of the cell instead and this smart mimic is of remarkable significance. We expect that such a mimic can be developed into an effective antioxidant drug and provide a new platform for the construction of intelligent artificial enzymes with multiple desirable properties.
منابع مشابه
Construction of a smart temperature-responsive GPx mimic based on the self-assembly of supra-amphiphiles.
Glutathione peroxidase (GPx) is a major defense against hydroperoxides as a kind of seleno-enzyme that protects cells from oxidative damage. A supramolecular vesicle with controllable GPx activity and morphology has been successfully constructed by the self-assembly of supra-amphiphiles formed by host-guest recognition between cyclodextrin and adamantane derivatives. By introducing thermosensit...
متن کاملSeamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif
The noncoded aromatic 3,4-dihydroxy-L-phenylalanine (DOPA) amino acid has a pivotal role in the remarkable adhesive properties displayed by marine mussels. These properties have inspired the design of adhesive chemical entities through various synthetic approaches. DOPA-containing bioinspired polymers have a broad functional appeal beyond adhesion due to the diverse chemical interactions presen...
متن کاملA Systematic Study on the Self-Assembly Behaviour of Multi Component Fmoc-Amino Acid-Poly(oxazoline) Systems
We report a systematic study of a modular approach to create multi-component supramolecular nanostructures that can be tailored to be both enzyme and temperature responsive. Using a straightforward synthetic approach we functionalised a thermal responsive polymer, poly(2-isopropyl-2-oxazoline), with fluorenylmethoxycarbonyl-amino acids that drive the self-assembly. Depending on the properties o...
متن کاملSupramolecular Organometallic Architecture via Self-assembly
The formation of discrete supramolecular entities driven and held together through metal coordination has remained an intense area of study for the past decade. An attractive feature of this methodology is the rational design of diverse structures of predetermined shape, size, and functionality based on symmetry considerations. Creating new supramolecular architectures tests and refines our und...
متن کاملExperimental and computational studies reveal an alternative supramolecular structure for fmoc-dipeptide self-assembly.
We have investigated the self-assembly of fluorenylmethoxycarbonyl-conjugated dialanine (Fmoc-AA) molecules using combined computational and experimental approaches. Fmoc-AA gels were characterized using transmission electron microscopy (TEM), circular dichroism (CD), Fourier transform infrared (FTIR), and wide-angle X-ray scattering (WAXS). Computationally, we simulated the assembly of Fmoc-AA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 10 48 شماره
صفحات -
تاریخ انتشار 2014